The class I bHLH factors E2-2A and E2-2B regulate EMT.
نویسندگان
چکیده
Functional loss of the cell-cell adhesion molecule E-cadherin is an essential event for epithelial-mesenchymal transition (EMT), a process that allows cell migration during embryonic development and tumour invasion. In most carcinomas, transcriptional repression has emerged as the main mechanism responsible for E-cadherin downregulation. Here, we report the identification of class I bHLH factor E2-2 (TCF4/ITF2) as a new EMT regulator. Both isoforms of E2-2 (E2-2A and E2-2B) induce a full EMT when overexpressed in MDCK cells but without affecting the tumorigenic properties of parental cells, in contrast to other EMT inducers, such as Snail1 or class I bHLH E47. E-cadherin repression mediated by E2-2 is indirect and independent of proximal E-boxes of the promoter. Knockdown studies indicate that E2-2 expression is dispensable for maintenance of the EMT driven by Snail1 and E47. Comparative gene-profiling analysis reveals that E2-2 factors induce similar, yet distinct, genetic programs to that induced by E47 in MDCK cells. These results, together with the embryonic expression pattern of Tcf4 and E2A (which encodes E12/E47), support a distinct role for E2-2 and suggest an interesting interplay between E-cadherin repressors in the regulation of physiological and pathological EMT processes.
منابع مشابه
An emerging role for class I bHLH E2-2 proteins in EMT regulation and tumor progression.
EMT is a complex process whereby cells lose cell-cell interactions and other epithelial properties whilst acquiring a migratory and mesenchymal phenotype. EMT is presently recognized as an important even for tumor invasion and metastasis. Functional E-cadherin loss is a hallmark of EMT and required for tumor invasion in the majority of carcinomas. Transcriptional downregulation is one of the ma...
متن کاملRole of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives
The microRNAs (miRNAs) are a class of small, 20-22 nucleotides in length, endogenously expressed noncoding RNAs that regulate multiple targets posttranscriptionally. Interestingly, miRNAs have emerged as regulators of most physiological and pathological processes, including metastatic tumor progression, in part by controlling a reversible process called epithelial-to-mesenchymal transition (EMT...
متن کاملHuman monoclonal antibodies that inhibit binding of hepatitis C virus E2 protein to CD81 and recognize conserved conformational epitopes.
The intrinsic variability of hepatitis C virus (HCV) envelope proteins E1 and E2 complicates the identification of protective antibodies. In an attempt to identify antibodies to E2 proteins from divergent HCV isolates, we produced HCV E2 recombinant proteins from individuals infected with HCV genotypes 1a, 1b, 2a, and 2b. These proteins were then used to characterize 10 human monoclonal antibod...
متن کاملAMMI Analysis of Wheat Substitution Lines for Detecting Genes Controlling Adaptability
To locate the genes controlling adaptability in bread wheat using AMMI (additive main effect and multiplicative interaction) model, twenty-one substitution lines derived from the parents Chinese Spring (recipient) and Chayan (donor) were used in a randomized complete block design with three replications in three different environments in the Agricultural College of Razi University, Kermanshah, ...
متن کاملAMMI Analysis of Wheat Substitution Lines for Detecting Genes Controlling Adaptability
To locate the genes controlling adaptability in bread wheat using AMMI (additive main effect and multiplicative interaction) model, twenty-one substitution lines derived from the parents Chinese Spring (recipient) and Chayan (donor) were used in a randomized complete block design with three replications in three different environments in the Agricultural College of Razi University, Kermanshah, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 122 Pt 7 شماره
صفحات -
تاریخ انتشار 2009